Friday, September 4, 2020

Simplex Method for Maximize Objective



In this article steps of the Simplex Method for solving Linear Programming Problem for Maximizing Objective Function has been explained with the help of an example where all the constraints are of <= type.

Example 01

Consider the problem below,

Maximize Z= 100X1 + 60X2 + 40X3

Subject to,
  X1 +  X2 +  X3 <= 100
10X1 + 4X2 + 5X3 <= 600
 2X1 + 2X2 + 6X3 <= 300
X1, X2, X3 >= 0


Solution:

Reconstructing the problem by introducing slack variables to convert each in-equation(constraint) into equation as follows:

Maximize Z= 100X1 + 60X2 + 40X3 + 0.s1 + 0.s2 + 0.s3

Subject to,
  X1 +  X2 +  X3 + s1 = 100
10X1 + 4X2 + 5X3 + s2 = 600
 2X1 + 2X2 + 6X3 + s3 = 300
X1, X2, X3, s1, s2, s3 >= 0


Here, s1, s2 and s3 are called slack variable.


Setup initial solution and construct initial simplex table

Searching starts from the origin(X1=0, X2=0, X3=0). Simplex method relies on the fact that, the solution must be at some corner point of the feasible solution region. When X1=0, X2=0 and X3=0 then obviously s1=100, s2=600 and s3=300. So, the current solution has three slack variables s1, s2, s3 with non-zero solution and three decision variables X1, X2, X3 with zero values. Variables with non-zero values are called basic variables and variables with zero values are called non-basic variables

 Table 01: Initial Simplex Table
________________________________________________________________________________________
Cj                                       100  60  40  00  00  00
----------------------------------------------------------------------------------------
      Basic     Solution                   X1  X2  X3  s1  s2  s3
      Variable  Variable
CB       B        b(=XB)                    
----------------------------------------------------------------------------------------
0      s1    100                 1   1   1   1   0   0 
0      s2    600                 10  4   5   0   1   0 
0      s3    300                 2   2   6   0   0   1 
----------------------------------------------------------------------------------------
 Table 02: Calculation of Entering Variable
________________________________________________________________________________________
Cj                                       100  60  40  00  00  00
----------------------------------------------------------------------------------------
      Basic     Solution                   X1  X2  X3  s1  s2  s3
      Variable  Variable
CB       B        b(=XB)                    
----------------------------------------------------------------------------------------
0      s1    100                 1   1   1   1   0   0 
0      s2    600                10   4   5   0   1   0 
0      s3    300                 2   2   6   0   0   1 
----------------------------------------------------------------------------------------
Z(=CB*XB)   Zj= ⅀(CBi*aij)          0   0   0   0   0   0
 =0         Cj - Zj            100  60  40   0   0   0

Entering Variable is the variable having maximum Cj - Zj(shown in red color in the table). Here X1 is the entering variable. This column is called key column.

 Table 03: Calculation of Departing Variable

________________________________________________________________________________________
Cj                                       100  60  40  00  00  00
----------------------------------------------------------------------------------------
      Basic     Solution                   X1  X2  X3  s1  s2  s3  Min
      Variable  Variable                                                   Ratio
CB       B        b(=XB)                                                   XB/X1
----------------------------------------------------------------------------------------
0      s1    100                 1   1   1   1   0   0  100/1=100
0      s2    600                10   4   5   0   1   0  600/10=60
0      s3    300                 2   2   6   0   0   1  300/2=150
----------------------------------------------------------------------------------------
Z(=CB*XB)   Zj= ⅀(CBi*aij)          0   0   0   0   0   0
 =0         Cj - Zj            100  60  40   0   0   0

s2 is the Departing Variable as it has the minimum value among all values (shown in green color in the table). This row is called key row.

Note that, intersection of key column and key row is the key element.

At the end of this step, we get the departing variable and new entering variable, according to which next simplex table will be developed for further computations.


 Table 04: Calculation of new Simplex Table

________________________________________________________________________________________
Cj                                       100  60  40  00  00  00
----------------------------------------------------------------------------------------
      Basic     Solution                   X1  X2  X3  s1  s2  s3  Min
      Variable  Variable                                                   Ratio
CB       B        b(=XB)                                                  
----------------------------------------------------------------------------------------
0      s1    40                  0  3/5 1/2  1 -1/10 0
100    X1    60                  1  2/5 1/2  0  1/10 0 
0      s3    180                 0  6/5  5   0 -1/5  1
----------------------------------------------------------------------------------------
place X1 in place of s2. Divide the row by the key element(10).
Calculate other row value by the formula below:
Old row value - (corresponding element in key column*corresponding new value in the key row )

Explanation of the new values in the table above:
for the row corresponding to s1, element in key column=1
0      s1    100                 1   1   1   1   0   0 
-(minus)
100    X1    60                  1  2/5 1/2  0  1/10 0  X 1

-----------------------------------------------------------
new value    40                  0  3/5  1/2 1  -1/10 0



for the row corresponding to s3, element in key column=2

0      s3    300                 2   2   6   0   0   1 

-(minus)
100    X1    60                  1  2/5 1/2  0  1/10 0  X 2
-----------------------------------------------------------
new value    180                 0  6/5 5    0  -1/5 1


 Table 05: Calculation of Entering Variable & Departing Variable

________________________________________________________________________________________
Cj                                       100  60  40  00  00  00
----------------------------------------------------------------------------------------
      Basic     Solution                   X1  X2  X3  s1  s2  s3  Min
      Variable  Variable                                                   Ratio
CB       B        b(=XB)                                                   XB/X2
----------------------------------------------------------------------------------------
0      s1    40                  0  3/5 1/2  1 -1/10 0  40/(3/5)
100    X1    60                  1  2/5 1/2  0  1/10 0  60/(2/5)
0      s3    180                 0  6/5  5   0 -1/5  1  180/(6/5)
----------------------------------------------------------------------------------------
Z(=CB*XB)   Zj= ⅀(CBi*aij)          100 40  50  0   10  0
=6000         Cj - Zj            0   20 -10  0  -10  0  
Key Column : X2
Key Row    : s1
Key Element: 3/5



 Table 06: Calculation of new simplex table

________________________________________________________________________________________
Cj                                       100  60  40   00   00   00
----------------------------------------------------------------------------------------
      Basic     Solution                   X1  X2  X3   s1   s2   s3  Min
      Variable  Variable                                                       Ratio
CB       B        b(=XB)                                                  
----------------------------------------------------------------------------------------
60     X2    200/3               0   1  5/6  5/3 -1/6   0 
100    X1    100/3               1   0  1/6 -2/3  1/6   0
0      s3    100                 0   0  4    -2   0     1
----------------------------------------------------------------------------------------
Z(=CB*XB)   Zj= ⅀(CBi*aij)         
=6000         Cj - Zj           

place X2 in place of s1. Divide the row by the key element(3/5).


Calculate other row value by the formula below:
Old row value - (corresponding element in key column*corresponding new value in the key row )

Explanation of the new values in the table above:
for the row corresponding to X1, element in key column=2/5

100    X1    60                  1  2/5 1/2  0    1/10  0 
-(minus)
60     X2    200/3               0   1  5/6  5/3 -1/6   0  x2/5
---------------------------------------------------------------------------------------------------------------
             100/3               1   0  1/6 -2/3  1/6   0 


for the row corresponding to s3, element in key column=6/5

0      s3    180                 0  6/5  5    0  -1/5   1
-(minus)
60     X2    200/3               0   1  5/6  5/3 -1/6   0  x6/5
-----------------------------------------------------------------
             100                 0   0  4    -2   0     1



 Table 07: Final Simplex Table

________________________________________________________________________________________
Cj                                       100  60  40     00    00    00
----------------------------------------------------------------------------------------
      Basic     Solution                   X1  X2  X3     s1    s2    s3
      Variable  Variable                                                        
CB       B        b(=XB)                                                  
----------------------------------------------------------------------------------------
60     X2    200/3               0   1  5/6    5/3   -1/6   0 
100    X1    100/3               1   0  1/6   -2/3    1/6   0
0      s3    100                 0   0  4      -2     0     1
----------------------------------------------------------------------------------------
Z(=CB*XB)   Zj= ⅀(CBi*aij)         100  60 200/3  100/3  20/3  0
=22000/3      Cj - Zj           0    0  -80/3 -100/3 -20/3  0



Since, all the values in  Cj - Zj are -ve, so, there are no chance of further improvement in the maximization. So, the solution is,

X1= 100/3
X2= 200/3
X3= 0
Z= 22000/3
 
Test that, X1, X2, X3 satisfyies all the constraints to verify the solution is feasible or not.

23 comments:

  1. Write down content of this article in your notebook very carefully.
    After completion, please inform here (As Reply)....

    ReplyDelete
  2. Read the article.
    After completion of reading, please inform here (As Reply)....

    you do not have to mention any query/ confusion/ question regarding this article,
    I will make a conference at the end of your reading....

    ReplyDelete